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Abstract: We investigate the decay of an inhomogeneous D1-brane wrapped on a S1

with an electric field. The model that we consider consists of an array of tachyon kink and

anti-kink with a constant electric flux. Beginning with an initially static configuration,

we numerically evolve the tachyon field with some perturbations under a fixed boundary

condition at diametrically opposite points on the circle S1. When the electric flux is smaller

than the critical value, the tachyon kink becomes unstable; the tachyon field rolls down the

potential, and the lower dimensional D0- and D̄0-brane become thin, which resembles the

caustic formation known for this type of the system in the literature. For the supercritical

values of the electric flux, the tachyon kink remains stable.
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1. Introduction

Spatially inhomogeneous rolling tachyon on an unstable D-brane has been studied in bound-

ary conformal field theory (BCFT) [1 – 3], boundary string field theory (BSFT) [4], and

Dirac-Born-Infeld (DBI)-type effective field theory [5 – 15]. In BCFT, this subject was

considered in the presence of spacetime-dependent marginally deformed tachyon vertex

operator at the worldsheet boundary. The evolution of the resulting energy-momentum

tensor is qualitatively different from that of the homogeneous rolling tachyon [16, 17]. The

energy density evolves into a localized delta-function array within a finite critical time.

These delta-function singularities were interpreted as codimension-one D-branes [1 – 3].

In lower-energy effective field theory approaches for unstable D-branes, most of the

actions involve only the first derivatives of fields on the brane. Since the actions are

represented by truncating all the higher derivatives of fields, they are considered reliable

only when the second and higher derivatives are small. Nonetheless, the effective actions

have been shown to reproduce various nontrivial aspects of the unstable D-brane dynamics

in special settings, for example, the spatially homogeneous rolling tachyon [18 – 21] and

lower dimensional D-branes as static worldvolume solitons [22 – 28].

In an inhomogeneous time evolution of an unstable D-brane, however, its dynamics

is not governed by a truncated effective action after a certain critical time. Felder et. al.

showed that caustics develop in some regions during the evolution of the inhomogeneous
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tachyon field with a runaway potential in the DBI-type action [5]. They treated the tachyon

as a collisionless fluid and found that the tachyon field becomes multi-valued in those

regions within a finite critical time. They interpreted the caustics as a signal that the

higher derivatives of the tachyon field blow up [5, 11]. More examples for the pure tachyon

evolution have been investigated in refs. [6, 8]. They observed that the slope of the tachyon

field near the kink diverges within a finite time. Authors identified this phenomenon with

the caustic formation observed in ref. [5].

Interesting aspects of the low energy effective field theory with an electric flux turned

on, have been considered in the tachyon vacuum [29, 20, 21, 30, 31, 15]. In this work, we

shall examine the role of the electromagnetic fields on an unstable D-brane where those

fields are varying in time and in space with a nonzero flux. The electric flux density here

is identified with the string charge density on the D-brane [32, 33]. When the tachyon and

the electromagnetic fields depend on time (or one spatial) coordinate only, the equations

of motion imply that all the electromagnetic fields are constants [21, 25]. Consequently,

the electromagnetic fields become simply parameters of the tachyon solution. However, in

an inhomogeneous time evolution process, the electromagnetic fields depend on both time

and space in general [15].

In this paper, we shall consider a simple case in the DBI-type action which contains a

tachyon and a single electric field. The electric field is turned on along the inhomogeneous

direction which we restrict to be a circle S1. Assuming that the tachyon and the electric

field depend on time and one spatial coordinate, we numerically solve the master equation of

the tachyon field under a fixed boundary condition at diametrically opposite points, which

is closely related to the formation of the D0-D̄0 pair located at diametrically opposite

points on the circle S1 [34 – 36].

We find that there exists a critical value of the string charge density under which the

kink is unstable. The kink approaches a similar state which resembles the caustic formation

observed in the pure tachyon case [8]. If the string charge density is increased above the

critical value, we find that the tachyon kink becomes stable.

In section 2, we present the Dp-brane model with a tachyon and an electric field in

the DBI-type action. In section 3, we numerically solve the field equation and discuss the

stability. In section 4, we analyze the stability in a semi-analytic manner, and conclude in

section 5.

2. Dp-brane model with tachyon and electric field

We shall consider the dynamics of the tachyon field described by DBI-type action in the

presence of gauge field interactions. With general gauge field interactions, the tachyon and

the gauge fields are coupled in a very complicated manner. Therefore, we shall consider

the simplest case in which the tachyon field depends on time and on one spatial coordinate

only while the electric field is turned on along that inhomogeneous spatial direction.

The DBI-type action with gauge field interactions on an unstable Dp-brane in flat
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space is given by [37 – 39]

S = −Tp

∫

dp+1xV (T )
√
−X, (2.1)

X = det(ηµν + ∂µT∂νT + Fµν), (µ, ν = 0, 1, . . . , p), (2.2)

where Tp is the unstable Dp-brane tension, V (T ) is a runaway tachyon potential, and Fµν

is the field-strength tensor for the gauge field Aµ. The equations of motion for the tachyon

and the gauge field read

∂µ

(

V Cµν
S√

−X
∂νT

)

+
√
−X

dV

dT
= 0, (2.3)

∂µ

(

V Cµν
A√

−X

)

= 0, (2.4)

where Cµν
S(A) is the symmetric (anti-symmetric) part of the cofactor for the matrix (η +

∂T∂T + F )µν . We consider the tachyon and the electric field along the inhomogeneous

direction living in the worldvolume of the Dp-brane,

T = T (x0, x1), E ≡ F01(x
0, x1), (2.5)

and, for simplicity, turn off all the other components of the electromagnetic field. For the

unstable D1-brane, the above field ansätze (2.5) are the general setting with no restriction.

With these fields on the unstable Dp-brane, the quantity X and the cofactor matrix are

simplified as

X = −(1 − Ṫ 2 + T
′2 − E2), (2.6)

(Cµν) =

(

1 + T
′2

E − Ṫ T
′

−E − ṪT
′ −1 + Ṫ 2

)

, (2.7)

where Ṫ ≡ ∂0T , T ′ ≡ ∂1T and all other components of Cµν are trivial, i.e., Cµν = δµν .

The solution to the gauge field equation (2.4) is then simply

Π ≡ βE = constant, (2.8)

where Π ≡ ∂L/∂(∂0A1) = ∂L/∂E is the conjugate momentum for the gauge field A1 in

the Weyl gauge A0 = 0. We also have a defined quantity

β ≡ TpV√
−X

. (2.9)

Using eq. (2.8), we can express the electric field E with the tachyon field T and the constant

electric flux Π as

E2 =
Π2(1 − Ṫ 2 + T

′2
)

Π2 + T 2
p V 2

. (2.10)
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The tachyon field equation (2.3) which completely governs the dynamics of the unstable

D-brane, is now written as

(1 + T ′2)T̈ − (1 − Ṫ 2)T ′′ − 2Ṫ T ′Ṫ ′ +
T 2

p V (1 − Ṫ 2 + T ′2)

Π2 + T 2
p V 2

dV

dT
= 0. (2.11)

Setting Π = 0 in the above equation (2.11), we obtain the field equation for the pure

tachyon [5].

The components of the energy-momentum tensor are

T 00 = β(1 + T ′2) (2.12)

T 01 = −βṪT ′, (2.13)

T 11 = −β(1 − Ṫ 2). (2.14)

Before we close this section, let us comment on what was studied for the pure tachyon

case (Π = 0) in a relation to a caustic formation. It is well-known that the tachyon potential

for large T exponentially decays, V (T ) ∼ e−αT with an arbitrary positive constant α [18].

Then for the case of pure tachyon field (Π = 0), the tachyon equation (2.11) is reduced

to [5]

(1 + T ′2)T̈ − (1 − Ṫ 2)T ′′ − 2Ṫ T ′Ṫ ′ = α
(

1 − Ṫ 2 + T ′2
)

. (2.15)

It was shown in the literature [5, 8, 9, 11] that eq. (2.15) develops a caustic at a finite time,

which we shall reconsider in section 4.3.

On the other hand, with a nonvanishing electric flux Π, eq. (2.11) is rewritten as

(1 + T ′2)T̈ − (1 − Ṫ 2)T ′′ − 2Ṫ T ′Ṫ ′ = −B(T )(1 − Ṫ 2 + T ′2), (2.16)

where

B(T ) =
T 2

p V

Π2 + T 2
p V 2

dV

dT
. (2.17)

We shall discuss the role of the electric flux Π for the 1/cosh-type tachyon potential in

section 4 by investigating the behaviors of B(T ) for various Π’s.

3. Evolution of tachyon kink array on D1-brane

In this section we investigate the time evolution of an inhomogeneous tachyon kink array

on an unstable D1-brane in the presence of an electric field. The D1-brane now contains

a fundamental string with a string charge density Π. We shall also discuss the subsequent

dynamical formation of the lower dimensional D0/D̄0-brane. Although we focus on the D1-

brane for simplicity, the results are generally applied to Dp-branes when only one spatial

direction of them is inhomogeneous. We solve the time-dependent field equation (2.11)

numerically with a well-known tachyon potential

V (T ) =
1

cosh
(

T√
2

) . (3.1)
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For the constant electric field, E = E0, with the above potential the static regular kink

solution was obtained in ref. [25]. For 0 < E2
0 < 1, the solution reads

T0(x) =
√

2 sinh−1

[
√

T 2
1

β2
0 − Π2

− 1 sin

(

√

β2
0 − Π2

√
2β0

x

)]

, (3.2)

where the constant β0 = Π/E0 is the value of β for the static solution. This solution

represents a tachyon kink-anti-kink array on a D1-brane, and reduces to a pure tachyon

solution when Π = 0 [23].

In order to investigate the tachyon evolution, we evolve this static solution with a

“minimal” perturbation by solving the time-dependent field equation (2.11). Here, the

minimal perturbation is implied by imposing the initial conditions,

T (t = 0, x) = T0(x), (3.3)

Ṫ (t = 0, x) = 0. (3.4)

In principle, if the the initial velocity of the tachyon field is zero, the system never evolves;

it is easy to see from the field equation (2.11) that the static solution remains as the solution

in the course of evolution. However, in numerical simulations, the intrinsic numerical errors

coming from the numerical scheme play a role of perturbation. Once the numerical code is

stable, the tiny numerical error induces a minimal perturbation to the static system. If the

initial configuration is physically stable, the system will not evolve except exhibiting small

fluctuations. On the other hand, if the system evolves from the initial configuration as time

elapses, it means that the system is physically unstable. This is not from the numerical

instability. Therefore, applying such a minimal perturbation is very useful for a system at

present which is suspected unstable to form a caustic at later times.

The boundary condition we impose is

T (t, xn) = 0, (3.5)

where xn is the location of the n-th node of the initial static configuration (3.2). This

boundary condition implies that we fix the spatial coordinates of the kink/anti-kink centers

during evolution. By doing so, we may consider the time evolution of only one patch (a half

period) of the kink array, and the rests are merely a duplication of that patch configuration.

Under the boundary condition (3.22), the compactification radius is fixed by the periodicity

of the static kink solution while it was not fixed in the Sen’s work in ref. [35].

The initial conditions, (3.3) and (3.4), imply the “point symmetry” about the kinks

and the “reflection symmetry” about the line x = xmax where the tachyon field has the

maximum value. The boundary condition (3.5) that we impose preserves such symmetries

in the course of evolution. For the pure tachyon case, we can observe the formation of the

D0-D̄0 pair located at diametrically opposite points on the circle S1 initiated by Sen, and

with the given boundary condition the Z2 symmetry is preserved [34 – 36]. In the presence

of electric flux, we impose the boundary condition in the same way as we do for the pure

tachyon case, although the Z2 symmetry is now absent; we believe that it is an appropriate

and the simplest set-up that we can consider in the first step for the stability check.
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Figure 1: Plot of (a) T (t, x) and (b) Ṫ (t, x) for the pure tachyon case with β2

0
= 10−2T 2

1
. From

the bottom, the lines correspond to t = 0, 50, 100, . . . , 300, 310, 320, . . . , 370. (The line style and

color are in the same order in the rest of figures.) In (a), the tachyon field grows as it rolls down

the run-away potential. Near the kink, the slope increases rapidly as the tachyon fluid flows to the

kink. In (b), Ṫ increases gradually in the bulk region while it increases very rapidly near the kink.

If it is evolved further, the slope gets very steep and a caustic is accompanied.

3.1 Pure tachyon case (Π = 0)

Let us first consider the pure tachyon case (Π = 0) in which caustic phenomena have been

previously observed in a bit different set-ups [5, 8]. In ref. [5], the authors studied the

caustic problem with an arbitrary initial configuration, and treated the tachyon field as

collisionless fluid during the evolution. They found that there develop some regions where
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the tachyon field becomes multi-valued at a finite time. In ref. [8], the authors studied

the tachyon evolution in a very similar way to ours, but with different initial conditions

and a potential V = exp(−αT 2). Therefore, it is worthwhile to examine how the caustic

phenomenon arises in our set-up if it exists.

For Π = 0, the static solution (3.2) is simplified as

T0(x) =
√

2 sinh−1

[
√

T 2
1

β2
0

− 1 sin

(

x√
2

)

]

. (3.6)

The proper range of β0 is then given by

0 < β2
0 < T 2

1 . (3.7)

In the limit of β2
0 → 0, the slopes of the tachyon profile (3.6) at the kink and the anti-kink

sites become infinite, and the region between the kink and the anti-kink goes to the closed

string vacuum. However, the period of the static tachyon configuration remains at the same

constant value 2
√

2π. Therefore, the solution becomes an array of step functions with an

infinite height at each site of the kink and the anti-kink [22, 25]. For various values of β0 in

the above range, we have performed numerical calculations. We observed that evolutions

are more or less similar regardless of the value of β0. We show numerical results in figure 1

which exhibit a typical evolution behavior.

Beginning with the static configuration and a minimal perturbation, the tachyon field

grows as it rolls down the potential. The velocity of the tachyon field Ṫ gradually grows

everywhere except the fixed nodes where lower dimensional D0/D̄0-branes are located. The

initial static configuration is never physically stable. At late times, we can observe that the

velocity near the kink grows faster than in the bulk, and the slope of the tachyon field gets

very large. This behavior is very similar to what was observed in ref. [8], so we identify

it with the early stage of a caustic formation. When it evolves further, the numerical

calculation diverges since the slope becomes too large as in ref. [8].

Due to the caustic behavior at late times, it is not possible to observe the final decay

products, such as lower dimensional D-branes and tachyon matter, in the inhomogeneous

evolution of the unstable D-brane. Although the main purpose of present work is to

investigate the stability of a given kink solution using numerical techniques, let us consider

the decay products of our system in an analytic manner. Since we are considering the

evolution of an unstable D-brane on a compactified circle, the total energy of the system

is finite. The total energy of the initial kink (anti-kink) (3.6) is given by [25],

Ekink =

∫

√
2

2
π

−
√

2

2
π

dxT 00 =
√

2πT1 = T0, (3.8)

where the energy density T 00 is defined in eq. (2.12). The energy of the initial static

kink (anti-kink) gives exactly the tension of D0 (D̄0)-brane for the specific tachyon po-

tential (3.1). Note that the energy does not depend on β0. In other words, the energy of

the expected final decay product D0 (D̄0) which corresponds to the kink (anti-kink) in the

– 7 –
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thin limit (β0 → 0) is exactly the same with that of the kink (anti-kink) with an arbitrary

β0. If the story is so, no tachyon matter is produced in principle. For the other kink

(anti-kink) solutions in more general runaway-type tachyon potentials [24], the analytic

approach becomes more complicated.

For our case, one can expect that the tachyon matter, if it should be produced in the

very final stage, would come only from the minimal perturbation applied numerically, but

it is a negligible amount. In the numerical evolution, however, such an ideal final stage

can never be reached due to the caustic behavior as we described above, so the final decay

products are beyond description.

3.2 Tachyon with electric flux (Π 6= 0)

In this section, we consider the tachyon evolution with an electric field turned on. It is

expected that the fundamental string which connects the lower dimensional D0/D̄0-branes

modulates the tachyon flow and decay.

The electric flux Π = βE remains constant during evolution. This is the solution to

the gauge field equation as was discussed in section 2. What is remaining is to solve the

tachyon field equation, which we shall do numerically with applying Π from a very small

value. For Π 6= 0, the static solution (3.2) is valid for

β2
0 − T 2

1 < Π2 < β2
0 . (3.9)

The value of β0 is not restricted, in principle, once Π is ranged according to the above

relation, or vice versa.

3.2.1 Unstable solution

The pure tachyon solution (3.6) is a continuous limit (Π → 0) of the static solution (3.2)

with electric field. Therefore, turning on tiny amount of electric flux would not affect the

evolution pattern so much, and the result for small Π will be similar to that of the pure

tachyon case.

Since we are interested in the tachyon evolution in comparison with the pure tachyon

case, first we fix the value of β0 and vary Π in the range (3.9). When Π is very small,

we observe from numerical calculations that the tachyon evolves in a very similar way to

the pure tachyon case. In figure 2, we show the numerical results for β0 = 0.1T1 and

Π = 10−3β0 (i.e., E0 = 10−3). The tachyon field grows in time in the bulk, and around

the kink/anti-kink at late times it exhibits a similar caustic behavior to what happened in

the Π = 0 case. When the electric flux is small, the fundamental string cannot properly

modulate the tachyon flow to the kink direction. This picture is common for all the values

of β0, and even for β2
0 > 1 which was a prohibited range for the pure tachyon case.

As time elapses, the energy flows from the bulk region to the kink/anti-kink (See

figure 3). The energy density (2.12) in Hamiltonian representation is given by

ρ = H =
√

(1 + T ′2)(Π2 + Π2
T + V 2), (3.10)
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Figure 2: Plot of (a) T (t, x) and (b) Ṫ (t, x) for the tachyon-plus-electric field case with

β2

0
= 10−2T 2

1
and Π2 = 10−6β2

0
. From the bottom, the lines correspond to t =

0, 50, 100, . . . , 300, 310, 320, . . . , 370, 374. The overall evolution is very similar to the pure tachyon

case, but is lagged a little bit due to the nonvanishing electric flux. This case confronts a caustic

in the end.

where the conjugate momentum of the tachyon field T is

ΠT =
∂L
∂Ṫ

= βṪ . (3.11)

The plot of ρ = T 00 shows that the energy is lumped at the kink/anti-kink, and the

corresponding lower dimensional D0/D̄0-branes become thin due to the nonvanishing mo-

mentum flow toward the kink location. As time elapses further, the evolution steps into
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Figure 3: Plot of (a) energy density T 00 and (b) pressure T 11. As the tachyon evolves, the energy

flows from the bulk to the kink and the kink becomes thin. (See the zoom-in plot of the kink

region.) The pressure gradually increases to zero from the below.

the initial stage of the caustic formation in a very similar manner discussed in the pure

tachyon case, beyond which numerical calculations cannot be performed.

The pressure increases pretty homogeneously to zero from the below as shown in fig-

ure 3. The electric field which initially began from a constant value increases more or less

homogeneously in the bulk region, but it peaks up at the kink/anti-kink region at late

times as shown in figure 4.

Similarly to the case of the pure tachyon in section 3.1, we consider the decay products

analytically. Substituting the static solution (3.2) into the energy density relation (2.12),
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Figure 4: Plot of electric field E. E grows more or less homogeneously in the bulk region, and

peaks near the kink/anti-kink.

we obtain

T 00 = ΠE0 +
E0

Π

T 2
1

1 +
(

E2

0
T 2

0

Π2(1−E2

0
)
− 1

)

sin2
(

x
ξ

) , (3.12)

where ξ =
√

2/
√

1 − E2
0 . Integrating over a half period centered at the kink, we obtain

the initial total energy generated by the kink [25],

Ekink =

∫
ξπ

2

− ξπ

2

dxT 00 =

√
2πΠ2

√

β2
0 − Π2

+ T0, (3.13)

where β0 = Π/E0 and T0 =
√

2πT1. The terms on the right hand side of eq. (3.13) denote

the string charge over a half circle and the tension of the D0-brane respectively. The total

energy of the kink profile depends on both Π and β0. The thickness of the kink can also

be deduced from the slope of the static solution,

T0(x) ∼ 1

β0

√

T 2
1 − (β2

0 − Π2) x. (3.14)

For a given Π, once the tachyon is unstable and experiences changes in its thickness, the

evolution would not be in such a way as to follow other static configurations which are

described by different β0’s; the total energy Ekink is not conserved. Being different from

the pure tachyon case in this sense, it is hard to imagine what the final decay products

would be. In particular, for our current system in which the electric field E evolves in-

homogeneously near the kink, and which seems to accompany a caustic behavior at late

times, it is impossible to discuss analytically the decay products at the final stage.

– 11 –
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(b)
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Ṫ

x

x

Figure 5: Plot of (a) T (t, x) and (b) Ṫ (t, x) for the tachyon-plus-electric field case with β2

0
=

10−2T 2

1
and Π2 = 10−1β2

0
. The lines correspond to t = 0, 30, 60, . . . , 600, but are distinguishable

only in the zoom-in plot of the top region. The tachyon field is very stable and exhibits only very

small oscillations. Although we have not plotted enough time slices, the top part of the tachyon

configuration experiences about 20 oscillations till t = 600. In (b), Ṫ also oscillates about zero

stably. (Depending on the values of β0 and Π, Ṫ can be less wiggly.)

3.2.2 Stable solution

As the value of Π is increased, the electric flux on the fundamental string suppresses more

efficiently the tachyon flow toward the kink as well as the tachyon decay in the bulk. Above

some critical value of Π, therefore, we expect that the flux completely blocks the tachyon

evolution and makes the tachyon stable. The existence of the electric flux (the T ′2Π2 term)

– 12 –
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Figure 6: Plot of Tmax for β2

0
= 10−2T 2

1
and Π2 = 10−6, 10−4, 10−3, 10−2, 10−1β2

0
. For subcritical

values of Π, Tmax grows monotonically. For supercritical values of Π, Tmax becomes stable.

takes parts in the energy density (3.10), which presumably suppress the kinetic portion of

the tachyon field for a given system.

From numerical calculations, we observe that the critical value ranges around Πc(β0) ∼
0.1β0, or less. The numerical coefficient also depends on β0. In figure 5, we show the

numerical results for β0 = 0.1T1 and Π =
√

0.1β0. The tachyon remains very close to

the initial static solution with only small oscillations (these are visible in the zoom-in plot

only). The velocity Ṫ oscillates about zero, which also indicates the stability of tachyon.

In figure 6, we plotted the evolution of the maximum value of T (Tmax) for several values

of Π.

For numerical calculations so far, we have adopted the initial condition (3.4) which

implies only a minimal perturbation. Therefore, one may question what would happen if

larger perturbations are applied to the stable solutions. The conclusion is that the stable

solution remains still stable unless the perturbations are unreasonably large. We have

performed numerical calculations with an initial condition, Ṫ (t = 0, x) = c1 × T (t = 0, x),

by varying the constant c1 in a reasonable range (|c1| ¿ 1). In figure 7, we plotted the

tachyon evolution for c1 = 0.01 with the same values of the other parameters. The tachyon

field remains still stable, although the oscillation amplitude gets larger than that of the

minimal perturbation case. For larger c1’s, the oscillation amplitudes are larger.

According to our numerical results, the critical electric flux depends on the value of

β0, Πc(β0) ∼ 0.1β0. For a given β0, the stability of the kink is guaranteed if Π ≥ Πc.

– 13 –
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Figure 7: Plot of (a) T (t, x) and (b) Ṫ (t, x) for the case of a larger perturbation with an initial

velocity Ṫ (0, x) = 0.01T (0, x). The other parameters are the same as in figure 5. The tachyon field

oscillates stably about the static solution as in the minimal perturbation case, but with a larger

amplitude.

Conversely, for a given Π, β0 should range as

Π < β0 . 10Πc. (3.15)

The initial static kink with β0 beyond the above range, is subject to instability. The slope

of the kink,
√

T 2
1 − (β2

0 − Π2)/β0, also has a constrained range for the stability accordingly;

the thickness of the lower dimensional D-brane does so, because it is evaluated roughly as

the inverse of the slope.
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Figure 8: Profiles of B(T ) for various Π.

4. Semi-analytic approach

In the previous section, we observed from numerical calculations that the static tachyon

configuration is stable when the electric flux is sufficiently large. For small or zero electric

flux, however, the static configuration is no longer stable; the tachyon rolls down the

potential and the caustic forms at the kink. In this section, we would like to capture the

stabilization story more conceptually mainly by analyzing the field equation. The analysis

will be a bit technical.

The tachyon field equation (2.11) can be arranged as

(1 + T ′2)T̈ = (1 − Ṫ 2)
[

T ′′ + (1 + T ′2)B(T )
]

+ 2Ṫ T ′Ṫ ′ + Ṫ 2T ′2B(T ), (4.1)

where

B(T ) ≡











1√
2

tanh
(

T√
2

)

, for Π = 0,

T 2

1
sech2

“

T√
2

”

tanh
“

T√
2

”

√
2

h

Π2+T 2

1
sech2

“

T√
2

”i , for Π 6= 0.
(4.2)

It is enough to consider only one patch between the kink (x = x0 = 0) and the anti-kink

(x = x1 =
√

2πβ0/
√

β2
0 − Π2) as we did in numerical calculations. Let us call the location

of the maximum of T as x1/2 (= x1/2). Equalizing the square-bracket part in eq. (4.1) to

zero corresponds to the static equation. We adopted its solution as the initial configuration.

Applying the minimal perturbation discussed in the previous section, we are now interested

in how T̈ behaves in order to check the stability. If its signature remains unchanged, T will

grow/decrease only; the tachyon is unstable. In order to have a stably oscillating tachyon

configuration, the signature of T̈ should keep changing during the evolution. It is sufficient

to look up this behavior only in some parts of the patch, so we shall do in the bulk region

where the evolution is gentle.

– 15 –



J
H
E
P
0
4
(
2
0
0
7
)
0
5
9

4.1 Pure tachyon case (Π = 0)

Suppose that the tachyon field begins to evolve initially with a tiny positive velocity Ṫ (t =

0, x) > 0 from the static configuration. The Noether momentum along the x-direction,

P1 = −βṪT ′, (4.3)

is always negative (positive) in the region 0 < x < x1/2 (x1/2 < x < x1). Therefore, the

energy density flows to the kink (anti-kink) accordingly, and there grows the slope of T as

well. And the corresponding term, 2Ṫ T ′Ṫ ′ + Ṫ 2T ′2B(T ), in eq. (4.1) is always positive.

The remaining factor in eq. (4.1) in determining the change in T̈ is now the square-

bracket part
[

T ′′ +
1 + T ′2
√

2
tanh

(

T√
2

)

]

. (4.4)

Initially this is zero since we adopted the static solution as the initial condition. As time

elapses, we observed from numerical calculations that the curvature T ′′ remained more or

less unchanged in negative in the bulk while T grows. Therefore, the above term (4.4)

remains positive since its second term is a growing function of T .

As a whole, all the terms on the right hand side of eq. (4.1) remain positive, which

keeps T̈ positive; the tachyon is unstable to grow in the bulk region and to form caustic

about the kink and the anti-kink.

The tachyon velocity Ṫ does not exceed one in the middle of the bulk region, which

can be understood from the following. The slope T ′ and the curvature T ′′ in this region is

relatively small, so we can approximate the tachyon field equation to a homogeneous one

T̈ =
1√
2
(1 − Ṫ 2) tanh

(

T√
2

)

. (4.5)

The solutions to this equation are given by [41],

T (t) =



















√
2 sinh−1

[

Ac cosh
(

t√
2

)]

√
2 sinh−1

[

Ae exp
(

t√
2

)]

√
2 sinh−1

[

As sinh
(

t√
2

)]

, (4.6)

where the constants Ac and As depend on the initial energy density and are less than
√

2

while Ae is an arbitrary constant. Then |Ṫ | remains less than one for all of the solutions

in eq. (4.6) and approaches one at infinity.

4.2 Tachyon with electric flux (Π 6= 0)

If the electric flux is turned on, the only difference in the field equation (4.1) is B(T )

defined in eq. (4.2). Unlike the pure tachyon case, B(T ) is now a bump-like function of T

of which maximum is at

T = Tmax ≡
√

2sech−1





√

(9Π4 + 8Π2T 2
1 )1/2 − 3Π2

√

2T 2
1



 . (4.7)
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We plotted B(T ) for several values of Π in figure 8.

The square-bracket part
[

T ′′ + (1 + T ′2)B(T )
]

(4.8)

which is initially set to zero can become negative if T is on the descending region of B(T ).

Then, it can possibly happen that the acceleration T̈ becomes negative. If the decelerating

state (T̈ < 0) maintains, the velocity will change its signature and become negative, Ṫ < 0.

Then T decreases and rolls back up the right hill of B(T ). The square-bracket (4.8), T̈ ,

and Ṫ evolve in an opposite way to that during descending. T will eventually change its

direction in the end. This process keeps T oscillating about a certain configuration, and

thus the tachyon becomes stable. The stabilization in this way is more probable for larger

Π since the maximum of B(T ) is lower; a certain amount of electric flux is required in order

to halt the tachyon rolling down the potential and the flow to the kink. This agrees with

our numerical results obtained in the previous section.

4.3 Caustic formation revisited

Before we close this section, let us consider the tachyon flow and the caustic formation in

the kink region. The quantity −X in eq. (2.6) should be positive for a physical system.

However, when a caustic formation is accompanied (Π < Πc), it was observed from numer-

ical calculations that the value of −X at the adjacent position to the kink falls to zero and

then becomes negative. This behavior of −X occurs just before the numerical calculation

diverges due to the large slope of T . This is very similar to the pure tachyon result in

ref. [8] where the authors used a different tachyon potential.

Following the techniques in refs. [5, 8], we can estimate the critical time at which

the fluid element at the adjacent position reaches the kink. Once −X becomes zero at a

position, assume that the tachyon evolution is constrained by

− X = 1 − Ṫ 2 + T
′2 − E2 =

T 2
1 V 2

Π2 + T 2
1 V 2

(

1 − Ṫ 2 + T ′2
)

= 0, (4.9)

where we used eq. (2.10) in the second step. As T 2
1 V 2/(Π2 +T 2

1 V 2) is nonzero, for Π < Πc,

the system is governed by the equation

1 − Ṫ 2 + T ′2 = 0, (4.10)

which is exactly the same one for the pure tachyon case. Then the results in refs. [5, 8] are

applied exactly in the same way as follows.

This first order partial differential equation was solved analytically by the method of

characteristics [5]. We introduce a parameter q which satisfies x(q, ti) = q, t(q, ti) = 0 ,

and T (q, ti) = Ti(q) at the initial moment ti (we set ti = 0). Then the solutions to the

equation (4.10) are

xc(q, t) = q − Ti,q
√

1 + T 2
i,q

t, (4.11)

T (q, t) = Ti(q) +
t

√

1 + T 2
i,q

, (4.12)
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where Ti,q ≡ ∂Ti/∂q and xc(q, t) is the characteristic curve of q at t. After a finite time t =

q
√

1 + T 2
i,q/Ti,q, xc will cross x = 0 with a nonzero value of tachyon field, T (q, t) = Ti(q)+

q/Ti,q. Finally the tachyon field becomes multi-valued there, and its slope diverges [8]. The

caustic forms firstly at the minimum of t = q
√

1 + T 2
i,q/Ti,q.

5. Conclusions

We investigated the numerical evolution of an inhomogeneous D1-brane with a string charge

density. We considered a DBI-type action which contains a tachyon field T with a run-away

potential V = 1/ cosh(T/
√

2) and a gauge field A1 in a flat (1+1) dimensional spacetime.

The target space that we considered is a compactified circle S1 with a fixed radius. The

tachyon field presents an inhomogeneous kink and anti-kink array on the circle. The

fundamental string which we considered induces an electric field E on the D1-brane. The

electric flux Π (the string charge density) is solved to be constant while the electric field is

let to vary both in time and in space.

There exists a static solution when the electric field is constant, E = E0 [23, 25]. We

focus our interest on the case of 0 ≤ E0 < 1 for which the tachyon profiles represent a kink-

anti-kink array. For the pure tachyon case (E0 = 0), it had been studied in refs. [5, 8] that

the tachyon field is unstable to form a caustic at the location of the kink, or the anti-kink;

the tachyon field becomes double-valued at a finite time, and thus the lower dimensional

D-brane becomes thin.

For the initial configuration in evolving the tachyon field, we adopt the static solution

of which configuration is determined by two parameters, the electric flux Π and the electric

field E0 (or β0 = Π/E0). The compactification radius is then fixed to
√

2/
√

1 − E2
0 .

The electric flux Π remains constant during the evolution as a solution to the gauge field

equation, while E (β) is allowed change. Applying a minimal perturbation on the initial

configuration, we evolved the tachyon field.

When the string charge density Π is zero or sufficiently small, the tachyon is unstable

regardless of the initial pressure of the tachyon kink, −β0. T rolls down the potential V ,

and its slope gets large at the kink and the anti-kink. Although it is never possible to reach

numerically the infinite-slope state, we expect that the tachyon configuration approaches

the situation of caustic formation in a similar way discussed in ref. [8]. According to

the Sen’s proposal in [1], the final state can be interpreted as a thin D0-D̄0 pair located

diametrically opposite points on the circle [34 – 36].

When Π is sufficiently large, the tachyon becomes stabilized. The initial static solu-

tion remains stable even when larger perturbations are applied. The fundamental string

connecting D0- and D̄0-branes modulates the tachyon flow and provides the stability. The

stabilization is achieved when the electric flux is larger than some critical value Π > Πc

where Πc is a function of the initial β0, and numerically it is Πc ∼ 0.1β0. The stable kink

with Π > Πc is identified as the lower dimensional stable thick D-brane with thickness

∼ β0/
√

T1 − β2
0 .

It is not sufficient, however, to fully discuss the stability of the resulting thick D0-D̄0

pair with our limited boundary and initial conditions. To clarify the properties of the
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system, one needs more investigations with various boundary and initial conditions. For

example, if one imposes a deformed initial velocity of the tachyon and an appropriate

boundary condition, one would be able to observe pair annihilation of kink and anti-kink

which is related to the instability due to D0 and D̄0 charges.

Another example will be to consider varying radius of S1 in time, or to consider the

evolution on R1. In this case, the period of the tachyon kink which was initially set to

2
√

2π/
√

1 − E2
0 , may change in time. One possible way of evolution is to track the succes-

sive static solutions of different periods. The electric field then evolves homogeneously.

Our numerical study in this work was the first step to investigating the instability of the

tachyon-plus-electric flux system, with the conditions which preserve involved symmetries

maximally. In the future, we hope our work is extended to other various directions.
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